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1 Task

The aim of this practical was to examine and evaluate 4-5 GCC optimisations using a personally
developed test-suite in order to gain a better understanding of computer architecture concepts and
the effect of compiler optimisations.

2 Setup

• CPU: Intel Core i5-6500 @ 3.20GHz

• RAM: 8GiB DDR4

• OS: Fedora 28 (64-bit, kernel 4.18.16-200.fc28.x86 64)

• GCC: 8.2.1 20181105

3 Compiler Optimisations Chosen

I chose the optimisations below because they each are fairly simple, yet exploit different things,
e.g. sequential execution or vector registers. I also chose them because although they are simple,
they should allow for some speedup, e.g. loop unrolling should speed up a loop-heavy program, and
vectorisation should speed up array-heavy programs.

Optimisation flags require a value for the ‘-O’ flag in order to work1. I chose to use -O to avoid
any additional optimisations the compiler had.

3.1 Loop unrolling (-funroll-loops)

Branching and branch-prediction is expensive. Since loops repeat for a given condition, e.g. i <
10, we can limit the number of times that condition has to be checked by unrolling the loop. This
leads to speedups both because of the fewer branches, but also because there are more sequential
steps to execute, which is something processors are good at. The main downside is that the code
size increases.

3.2 Tail recursion (-foptimize-sibling-calls)

Tail-recursive functions differ from recursive functions by doing the accumulation of the recursion
as part of the parameters, instead of when the recursive call returns. This means that the compiler
can replace the tail-recursive call with a GOTO statement or similar, thereby saving stack space since
there is no need for recursively calling the function.

3.3 Loop interchange (-floop-interchange)

Loop interchange is swapping the inner and outer loops around. Doing this can improve ex-
ploitation of spatial locality and might also expose other optimisations, e.g. vectorisation.

1(Using the GNU Compiler Collection (GCC): Optimize Options, 2018)
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3.4 Tree vectorisation (-ftree-vectorize)

GCC uses trees as an internal representation of the compiled programs. This flag allows GCC to
use SIMD vector instructions to optimise the program code. This should speed up code which does
a lot of array manipulation.

4 Test-Suite

I wrote a variety of programs. Not all of them target the same optimisation, and it is possible
that some of them cannot be optimised using one of the chosen optimisations. In order to achieve
a measurable run-time, I defined the ‘loops.h’ file which contains the number of iteration each
program should run the function to measure. Apart from the matrix multiplication, I set this to
100, 000 iterations. To ensure that the compiler would not simply optimise away the program, the
output is printed in programs where there is one output, and an element of the array is printed in
programs whose result is an array.

4.1 2d mmult.c

A simple, näıve 2d-array matrix multiplication of 1024× 1024 matrices. This program should be
optimisable through loop unrolling, loop interchange, and vectorisation. The dimension of 1024 = 210

was chosen with the idea that it might fit nicer into vector registers.
Since matrix multiplication of matrices this large is already computationally expensive, only 5 iter-
ations were used instead of the default 100, 000.

4.2 1d mmult.c

A simple, näıve matrix multiplication of 1024× 1024 matrices, this time using 1d-arrays instead
of 2d-arrays. This was done to examine if the compiler is better at optimising 1d-arrays than 2d-
arrays.
Since matrix multiplication of matrices this large is already computationally expensive, only 5 iter-
ations were used instead of the default 100, 000.

4.3 arr incr.c

Increments all the numbers in an array by a given constant. The idea of this program was mainly
to target vectorisation although loop unrolling should improve it as well.

4.4 bst.c

A small, simple Binary Search Tree (BST) implementation. Values are inserted into the BST
and it is traversed in-order. This was done to target recursive function optimisations.

4.5 mymap.c

An implementation of a ‘map’ function over integers. This program’s purpose was to examine
if/how well the compiler can optimise function pointers.

5
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4.6 ptest.c

A simple primality test2. The while loop might be unrollable. However, I mainly chose to
include a primality test because it should be difficult to optimise automatically and so I wanted to
see if the compiler could optimise it.

4.7 reduce.c

The ‘reduction’ of an array, i.e. the sum of all its elements. The array in this file is an integer
array with 214 = 16384 elements. This size was, similar to the matrices’ dimension, chosen to
potentially be easily divisible into vector registers.

4.8 sum.c

Sums all the numbers from 1 to 10, 000 inclusive. The main optimisation target of this program
was loop unrolling.

4.9 trfact.c

Calculates the factorial of the given number using tail-recursion. To achieve the maximum
number of calls 20!, the largest factorial that fits in an unsigned long long, was used. This
program targets tail-recursive optimisations.

5 Manually Implemented Optimisations

I manually implemented two optimisations: inline functions and loop unrolling. The source for
these can be found in man-inline-src and man-funroll-src respectively. To measure how effective
the manual implementations were, I compiled the files without any optimisations.

5.1 Inline Functions

All code that could be moved to main was moved there. For the tail-recursive factorial, I also
transformed the tail-recursive function to a loop. This is an additional optimisation, however it
was something I did because it seemed logical: you can achieve the tail-recursive function inline
by converting it into a loop. Apart from this, and the BST implementation, all function code was
moved to main where possible.
The advantage of this should be that there are fewer operations due to avoiding the overhead of
calling and returning from functions. The disadvantage is that the code might be less legible, and
will likely not adhere to the “Don’t Repeat Yourself” (DRY) principle.

5.2 Loop Unrolling

Where applicable, I manually unrolled loops in my programs using the generalised version of
Duff’s Device3. This increases the code size and is almost the exact opposite of DRY, but it might
increase execution speed due to there being less branching. The code size and readability suffers
especially heavily when the two matrix multiplication programs are unrolled.

2taken from (Primality test - Wikipedia, 2018)
3(Holly, 2005)
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6 Data Collection

All programs were compiled and run on the scratch space of the PC used, to remove any delay
there might be by having the files on the synchronised user drive. A slight variation in timing was
observed through a couple of manual runs of the programs. To compensate for this variation, each
program was run 10 times. The data from each flag was put in separate CSV-files with the program
name indicating whether the flag was en- or disabled.

For timing I initially used /usr/bin/time. However, this times in lower resolution than the built-
in time shell keyword. Therefore, I decided to use the latter. To output to CSV, TIMEFORMAT was
set to “${prog name},%4U”. Additionally, displaying outputs takes time and completely clutters the
terminal when running 100, 000 iterations of the same function. To combat this, stdout was piped
to /dev/null. The benchmark.sh script takes around 45-60 minutes to complete.

7 Results and Analysis

All plots include error bars representing the standard error of the mean (SEM).

7.1 Compiler Optimisations

7.1.1 Loop Interchange

For loop interchange, the main difference was observed in terms of matrix multiplication. This
was expected, as loop interchange is a common matrix multiplication optimisation. For the other
programs, it had no effect4.

4see plot B.1: 13
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Figure 1: Loop-interchange on matrix multiplication.

For the 2d-array matrix multiplication, the time seems to have increased slightly with the flag
enabled. However, this seems to be a measurement error: looking at the assembler code reveals that
the two files are identical, meaning that the compiler did not find a way to interchange the loops.
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Figure 2: The assembler code for 2d mmult with and without optimisation (right and left respec-
tively) is identical.

This seems to indicate that the compiler does not only find it easier to optimise 1d-arrays, it
might find it impossible to optimise 2d-arrays. Looking at vectorisation further strengthens this
hypothesis.

7.1.2 Vectorisation

For vectorisation, several programs are sped up. The most drastic improvements are on the
reduce and arr incr programs where the execution time is almost halved. 1d-matrix multiplication

9
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is sped up by ≈ 15%5 and 2d-matrix multiplication is once again unchanged6, seemingly confirming
that the compiler cannot optimise 2d-arrays.

Figure 3: Both reduce and arr incr are sped up significantly by vectorisation.

It makes sense that reduce and arr incr are the programs on which vectorisation has the
greatest effect: arr incr is adding a constant to each element of a vector, and reduce can be split

5see plot B.1: 14
6see assembler A: 10
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into multiple vectors which can then be added together until all that remains is a vector register
with the total sum in it7. When examining vectorisation, I came across an interesting feature of
x86 vector instructions: in both reduce, but surprisingly also in bst, 0 is derived by using pxor on
the same register8 instead of simply using the constant $0. By searching online, I found that this
achieves greater performance, as the pxor is evaluated at the register rename stage9. However, as
zeroing it is not the bulk of the bst program, there is no speed-up to be gained from doing so.

An optimisation which affected similar programs to the ones sped up with vectorisation is loop
unrolling.

7.1.3 Loop Unrolling

With loop unrolling, the programs that were affected by vectorisation were also affected by loop
unrolling, with sum and my map being affected as well. This is likely due to the fact that vectorisation
targets large arrays, which will typically be iterated over in big loops, hence being suitable for loop
unrolling as well. My theory for why my map was optimised here and not through vectorisation is
that the compiler cannot know that the pointer to the function won’t change and so it does not
want to replace it with the function. For sum my theory is that vectorising it would require vectors
whose elements were the numbers of the loop and that these would be more expensive to construct
than the speedup of having them would win back. When comparing the results in Figure 4 and
Figure 3, it becomes clear that although loop unrolling helps, it is not as fast as hardware tools like
vector registers. Programs that optimised well using vectorisation still optimise with loop-unrolling.
However, the performance gain is not as great as with vectorisation. Since the sum program is purely
loop-based, its execution time is greatly decreased: from ≈ 0.65s to ≈ 0.30s. The program my map

does not improve its execution time much. However, this is still an improvement compared to no
optimisation with vectorisation.

As expected, the past three optimisations have not affected the recursive programs, i.e. bst and
trfact.

7see assembler A: 11
8see assembler A: 11 and 12
9(Fog, 2018) and (Cordes & balajimc55, 2017)
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(a) (b)

(c)

Figure 4: Loop unrolling speeds up the same programs as vectorisation, and some other programs
as well.
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7.1.4 Sibling and Tail Recursive Calls

When optimising sibling and tail recursive calls, both bst and trfact improve their execution
time. Other programs remain unaffected10 which was expected as they do not use any recursive
calls.

Figure 5: The tail-recursive function in trfact has been optimised into a loop by the compiler.

Examining the assembler code reveals that the compiler has optimised trfact as expected: the
tail-recursive function has been transformed into a loop. Looking at the assembler code for bst

reveals that the speedup is gained by re-ordering some of the instructions11. There are still recursive
calls to the function, they just happen later in the function.

10see plots in B.1: 15
11see assembler A: 12
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Figure 6: Both trfact and bst improve their execution time when using
-foptimize-sibling-calls.

As can be seen in the figure above, the reduction in execution time is not big: less than 0.01s.
Despite this, since no other optimisation has improved the execution time of these programs, I would
claim that a speedup is still significant. And this indicates that recursive function calls are difficult
to optimise.

The compiler optimisations were effective in varying ways. For comparison, a couple of manual
optimisations were implemented.

7.2 Manual Optimisations

7.2.1 Inline functions

For inline functions, some programs were more affected than others. Most programs were unaf-
fected12. The program that improved the most was mymap. This is likely because I knew, contrary to
the compiler, that the function pointer would not change and as such could substitute its definition
into the main loop.

12see plots B.2: 16
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Figure 7: By using knowledge unavailable to the compiler, mymap has improved execution time.

The tail-recursive factorial implementation is also improved. However, this is because of the
manual ‘inline’ transformation to a loop. It shows that this improvement is fairly simple to do and
does improve performance, but it is not simply moving the function inline.

The readability of the code was not too heavily affected by moving the functions, that could be
moved, inline.

15



CS4202 P02 - Compiler Optimisations 150015673 16 November 2018

7.2.2 Loop Unrolling

When comparing the results for mmult, it initially seems like the manual optimisation was better.
However, taking a look at the y-ticks reveals that while the proportional increase might be slightly
better, the time-scale has tripled. This is likely due to the compiler unrolling the loops in assembler
compared to the unrolling in C which is a higher level and hence might be slower. The C unrolled
version is also mostly impossible to read and much longer than the original program. What is
interesting is that the 2d-array implementation is still not affected. This suggests that the problem
lies elsewhere, perhaps in the memory access of 2d-arrays.

(a) Manual optimisation (b) Compiler optimisation

Figure 8: Comparing manual loop unrolling to compiler unrolling for mmult.
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The time-scale changing remains true for the other programs as well. And for mymap, the manual
loop unrolling even increased the execution time. For most of the manually unrolled programs,
it is also the case that the new proportion is close to, but not quite as good as, the compiler’s
optimisation.

(a) Manual unrolling (b) Compiler optimisation

(c) Manual unrolling (d) Compiler optimisation

Figure 9: Comparing manual loop unrolling to compiler unrolling for various programs.

8 Given More Time

Given more time, I would have liked look further into why the 2d-array matrix multiplication is
not being optimised. I would start off by examining if this was due to multiple optimisations being
required on top of each other, or whether the problem was the 2d-arrays themselves.
I would also have liked to examine the impact of my chosen optimisation in “the grand scheme of
things”, i.e. enabled a general optimisation level, specifically disabled a single optimisation, and
then compared the timings between all optimisations being enabled and all optimisations except
from one being enabled. This would have given an insight into how much the chosen optimisations

17
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affect, and are affected by, other optimisations being present.

9 Conclusion

In this practical, I constructed various small programs for testing compiler optimisations and
evaluated a subset of these. For comparison, I then implemented some optimisations by hand and
compared the results with the original code, and with the compiler. By doing so, I have confirmed
that compilers are usually better at optimising programs than humans, discovered some peculiarities
about computer architecture, and confirmed that primality testing is hard to optimise (I did not
manage to manually find a method for unrolling the loop in the primality test).

This practical has helped me gain a better and more thorough understanding of compiler opti-
misations, the need for these, and which programs can be optimised how and why/why not.
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A Assembler Code

A.1 Vectorised

Figure 10: 2d-array matrix multiplication is unaffected by vectorisation.
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Figure 11: reduce optimised using vector registers.
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Figure 12: Using pxor to set left and right child to 0 instead of using the constant $0.
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A.2 Sibling and Tail Recursive Calls

(a)

(b)
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(c)

Figure 12: The optimised vs. unoptimised bst assembler code, with the differences highlighted.
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B Plots

B.1 Compiler Optimisations

Figure 13: Loop interchange does not make a difference on the non matrix multiplication programs.
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Figure 14: 1d-array matrix multiplication is sped up slightly using vectorisation. 2d remains un-
changed.
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Figure 15: Several programs are unaffected by recursive call optimisations as they do not contain
any.

26



CS4202 P02 - Compiler Optimisations 150015673 16 November 2018

B.2 Manual Optimisations

Figure 16: Most programs were unaffected by manually moving function definitions inline.
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